
PHYSICAL REVIEW E DECEMBER 1999VOLUME 60, NUMBER 6
Interacting spiral waves in the Oregonator model of the light-sensitive
Belousov-Zhabotinskii reaction

I. Schebesch and H. Engel
Institut für Theoretische Physik, Technische Universita¨t Berlin, Hardenbergstraße 36, 10623 Berlin, Germany

~Received 1 June 1999!

We study the interaction of meandering spiral waves within the framework of a modified Oregonator model
for the light-sensitive Belousov-Zhabotinskii medium. In this medium the local excitation threshold can be
controlled by varying the intensity of incident light. At low as well as sufficiently high light intensity we find
stable axis-symmetric bound states consisting of two counterrotating spirals. At intensity values in between,
spiral pairs undergo a symmetry-breaking instability, leading to one spiral suppressing and expelling the other.
To avoid the instability, we consider a spiral wave interacting with its mirror image close to a plane boundary
impermeable to diffusion. The drift velocity and the drift direction of those pseudobound states parallel to the
boundary are strongly influenced by the light intensity.@S1063-651X~99!04012-X#

PACS number~s!: 05.65,1b, 05.45.2a, 47.54.1r, 82.20.Wt
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I. INTRODUCTION

The dynamics of isolated spiral waves has been studie
systems of quite different nature. The spectrum covers ro
ing waves of chemical activity in the Belousov-Zhabotins
~BZ! reaction@1#, coverage patterns of adsorbed species
platinum single crystal surfaces during CO oxidation un
ultrahigh vacuum conditions@2#, cAMP waves in aggregat
ing social amoeba colonies such as the slime moldDictyos-
telium discoideum@3#, circulating waves of neuromuscula
activity in cardiac muscle tissue@4#, spiral waves of intrac-
ellular calcium release@5#, and many others. Frequency s
lection, annihilation of colliding wave fronts, and trapping
inhomogeneities are phenomena that occur generically in
the mentioned active media. It is well known that spiral wa
dynamics can be complicated ranging from one frequen
simple rotation to quasiperiodic, compound rotation, and
spiral turbulence@6#.

Comparatively less is known about the interaction of s
ral waves. Experimentally one finds that the waves emit
by the spiral source provide an effective screening for
influence of other spirals. Thus, a possible interaction is
pected to be short ranged. At a distance between the cor
a few wavelengths it is extremely weak and negligible
any realistic time scale.

In a series of papers Aransonet al. @7# considered the
problem of spiral wave interaction in the framework of t
complex Ginzburg-Landau equation~CGLE!. This equation
describes the medium close to a supercritical Hopf bifur
tion. It was found that the interaction between spiral wav
decays exponentially at large distances of the spiral cores
smaller separation, the interaction results in a relative mo
of the spiral cores. The velocity of this motion possesse
radial componentv r , acting along the connecting line of th
core centers, and perpendicular to it a tangential compo
v t .

Depending on the parameters of the medium, the cha
ter of the interaction is attractive (v r,0) or repulsive (v r
.0). In a narrow parameter range at small separation bo
states can exist (v r50). A bound state formed by two coun
PRE 601063-651X/99/60~6!/6429~6!/$15.00
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terrotating spiral waves which have opposite topologi
charge is axis symmetric. In this case the tangential velo
components are equal and point in the same directionv t1
5v t2). Thus, axis-symmetric bound states drift as a wh
with constant velocity parallel to the symmetry axis. Tw
spiral waves with equal topological charge eventually form
bound state that has central symmetry. Then the directio
the tangential components is opposite (v t152v t2), and the
spiral pair as a whole rotates with constant angular velo
around the common center of symmetry. For both types
bound states, the stationary distance between the spiral c
is of order of the wave length.

Regarding the stability of bound states, in the CGL
model a spiral pair undergoes a symmetry-breaking insta
ity: one member of the spiral pair overwhelms its neighb
and pushes it to the periphery. This instability is related t
positive feedback of a random increase in the rotation
quency of one spiral@7#.

For excitable media, early numerical studies performed
Ermakovaet al. in 1989 with the FitzHugh-Nagumo mode
also led to the conclusion that bound states of spiral wa
can exist@8#. Recently, the problem of spiral competition
excitable media was considered based on numerical sim
tions of a three-variable reaction-diffusion model@9#. Again,
symmetry breaking in a spiral pair was found, leading to o
spiral suppressing and expelling the other.

Experimental evidence for the symmetry-breaking sp
pair instability in light-sensitive BZ media has been fou
recently using an open gel reactor@10#. We take the chemica
recipe used in these experiments as an orientation aid fo
choice of appropriate simulation parameters. Within the
actor also the drift of a spiral wave parallel to a plane bou
ary impermeable to diffusion has been measured. For s
metry reasons, close to the boundary the spiral wa
interacting with its virtual mirror image, models an axi
symmetric spiral pair. Further experimental and compu
tional results were reported in Ref.@11#.

The numerical investigations in this paper focus on
influence of the excitability on the behavior of axi
symmetric bound states. The calculations are carried out
light-sensitive BZ media, whose local excitation threshold
6429 © 1999 The American Physical Society
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first approximation is proportional to the intensity of incide
light. The BZ medium is described by a modified three va
able Oregonator model. We show that varying the inten
of externally applied illumination we can control the stabili
and the dynamics of the spiral pairs. The parameter ra
investigated covers with increasing light intensity outwa
meandering, inward meandering, and rigid rotation at la
cores. Being oscillatory for small light intensity the loc
dynamics becomes excitable, when a certain threshold is
ceeded.

In Sec. II we briefly discuss the modified Oregona
model. The results of the numerical simulations are p
sented in Sec. III. We conclude with a short summary a
discussion.

II. THE MODEL

In 1974 Field and Noyes proposed a minimal model
the BZ reaction based on five irreversible reactions am
three chemical species: bromous acid, HBrO2 ~the autocata-
lytic variable!, bromide ions, Br2 ~playing the role of an
inhibitor!, and the oxidized form of the metal ion catalyst,M
~ox! ~the recovery variable! @12#. This kinetic description
known as the three component Oregonator model can
plain many features of the BZ reaction.

In the light-sensitive variant of the BZ reaction th
ruthenium-bipyridyl complex is used as catalyst. In the us
scheme of the reaction, this complex promotes the autoc
lytic production of the activator HBrO2 only in its reduced
and photochemically unexcited state. Once the ruthen
complex becomes photochemically excited, it slowly ca
lyzes the production of the inhibitor bromide. Thus, ext
nally applied illumination can create an additional source
inhibitor Br2 and suppress the excitability of the medium. T
take account of photochemically produced Br2 Krug et al.
introduced an additional flow term into the equation for t
bromide balance. The modified three variable version of
Oregonator model reads@13#

«
]u

]t
5u~12u!2w~u2q!1DuDu,

]v
]t

5u2v, ~1!

«
]w

]t
5F1 f v2w~u1q!1DwDw,

with the dimensionless variablesu5(2k4/k3A)U, w
5@k4k5B/(k3A)2#W, v5(k2 /k3A)V, «5k5B/k3A, «8
52k4k5B/k2k3A, q52k1k4 /k2k3 , t5k5B time, x
5(Du /k5B)21/2 space, andA5@BrO3

2#, B5@bromomalonic
acid#1@malonic acid#, P5@HOBr#, U5@HBrO2#,
V5@M ~ox!#, W5@Br#. k1,...,k5 are the rate constants in th
Oregonator model. The parameterf is related to the stoichio
metric coefficienth in the reaction step of the Oregonat
scheme that describes the Br2 release by oxidation of mal
onic and bromomalonic acid (f 52h). The LaplaciansDw
andDu describe the diffusion of HBrO2 and Br2. The ratio
of the diffusion coefficientsDw /Du can be estimated from
the molecular weights of the two species. Diffusion ofv is
-
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omitted, because usually in experiments the catalyst is
mobilized in a silicia hydrogel matrix to avoid disturbanc
of hydrodynamic origin in the reaction zone. The parame
f describes the photochemically produced bromide flow.
first approximation it is proportional to the intensity of th
incident light. The chemical recipe that was used in the
periments by Brandtsta¨dteret al. @10# corresponds to the fol-
lowing parameters:f 51.8, 1/«58, 1/«85720, q50.002,
Du51.0, andDw51.12. We keep these parameter fixed d
ing most of the calculations. Note, that for a fixed value of,
the parameterf controls whether the system is in the osc
latory or the excitable regime. The chosen parameters w
large values of the parameterf yield a system in the excit-
able regime with high excitation threshold. A decrease of
causes a transition into the oscillatory regime via a sup
critical Hopf bifurcation atfHopf50.001737.

We have integrated Eqs.~1! numerically with no flux
boundary conditions substituting time derivatives by fin
differences according to an explicit Euler method and cal
lating the Laplacians by a five-point discretization. To ke
the influence of the boundaries small the calculations
carried out on 8003800 arrays~1603160 Oregonator spac
units! with grid spacingx50.2. As initial condition we take
a symmetric configuration of two counterrotating spirals w
wave lengthsl where the distance between the core cent
was chosen to bed' 2

3 l to guarantee an interaction betwee
the spiral waves.

III. RESULTS

A. Stability of bound states

Axis-symmetric bound states are denoted stable if
mean distance between the spiral tips,dtip , after some tran-
sient approaches a constant value in the range of the spi
wavelength as time goes to infinity. A bound state becom
unstable if the mean distance between the tips is growin
time.

To investigate the stability of the bound state with resp
to changes in the excitability of the medium the parametef
is gradually increased. Remember, thatf determines the ex-
citation threshold and in first approximation is proportion
to the intensity of incident light. Starting withf50 we find
the system in the oscillatory regime. Interacting spiral wav
perform outward meandering at large cores. As an exam
Figs. 1~a! and 1~b! depict the tip trajectories of both spirals
and the variation of the distancedtip between the tips with
time, respectively.dtip(t) is a high amplitude oscillation with
large periodT that is caused by the large dimensions of t
tip paths. The high frequency modulations indtip(t) belong
to the motion along the petals of the meander pattern. A
whole the bound state drifts with constant velocity parallel
its symmetry axis. Asymptotically, the mean distance b
tween the tips is constant.

While increasing the value off, the bound state remain
stable untilf reaches a certain thresholdf1 . For the chosen
parameters we havef150.0009. At this point the spiral pai
undergoes a symmetry-breaking instability: A sudden, i
tially small phase shift between the two spirals increa
with time, and finally one member of the spiral pair ove
whelms its neighbor and pushes it to the periphery. The
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FIG. 1. Dynamics of axis-symmetric bound states in the modified Oregonator model for different excitability of the medium.~a!, ~c!, ~e!
trajectories of the spiral tip,~b!, ~d!, ~f! time dependence of the distance between the tips of the interacting spiral waves. Parameter
f 51.8, 1/«58, 1/«85720, q50.002,Dw /Du51.12 ~these values are the same for all figures, except Fig. 7!. f parameter:~a!, ~b! f50,
stable bound state;~c!, ~d! f50.002, unstable bound state;~e!, ~f! f50.00375, stable bound state near the stability boundaryf2 . d.u.
denotes dimensionless Oregonator units.
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quence in Fig. 2 captures this situation showing the ti
evolution of a symmetrical but unstable initial configuratio
The corresponding tip trajectories, and the variation of
distance between them with time are shown in Figs. 1~c! and
1~d!, respectively. Spiral pairs are unstable in a whole
rameter range betweenf1 and a second thresholdf2 which
for the chosen parameters isf250.0036. The transition bac
into the regime of stable bound states takes place at comp
tively large values off where the tips of isolated, noninte
acting spiral waves follow a periodic circular orbit of larg
diameter. The instability area covers a part of the oscillat
regime as well as a larger part of the excitable regime. Th
results are summarized in the stability diagram, Fig. 3.
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completeness the figure also shows the tip path patterns
isolated spirals wave under the same conditions. Note,
the symmetry-breaking instability of spiral pairs occurs clo
to the parameter value where single spiral waves underg
transition from outward to inward meandering. Due to lar
space grids and simulation time it is difficult to decid
whether these two thresholds actually coincide or not.

Let tdelay denote the time interval~measured in rotation
periodsT of an isolated spiral wave at the same paramete!
that passes until the symmetrical bound state gains a p
shift obvious to the eye that increases and finally leads to
breakdown of the spiral pair. The dependence of the de
time on the parameterf is plotted in Fig. 4. At the lower
-
be-
FIG. 2. Time evolution of two interacting spi
ral waves in the unstable parameter range
tween f1 and f2 (f50.0025) starting with a
symmetric initial configuration.
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FIG. 3. Stability diagram of
spiral pairs for varying intensity
of incident light. Two interacting
spiral waves form stable boun
states in parameter region I an
III. The unstable region is labeled
II. Tip path patterns of single spi-
ral waves~not in scale! are shown
for illustration. For completeness
the local dynamics is indicated
too. HB denotes the supercritica
Hopf bifurcation of the local dy-
namics. Spiral pairs change drif
direction atf value labeled IP.
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boundary of the unstable areatdelay is quite large. With in-
creasingf it becomes smaller, and after the transition in
the excitable regime it remains nearly constant up to
upper boundary of the unstable area. This dependence
gests different mechanisms for the destabilization of
bound state.

In the oscillatory regime we find a steep increase in
delay time when the stability boundaryf1 is approached.
This involves a large increase of simulation time. To det
mine an accurate as possible value forf1 we proceed as
follows. At a f value where an extrapolation of the grap
from Fig. 4 predicts a delay time larger than 100T, we fol-
low the evolution of the spiral pair over a maximum of 20
rotation periods. When the spiral pair remains stable, we
troduce an external phase difference increasing the param
f for a short time in the neighborhood of one spiral core
this phase difference grows up and the bound state beco
unstable, we repeat the same procedure at a slightly sm
f value. The boundaryf1 corresponds to that value at whic
the artificially introduced phase difference persists or e
decreases over more than 100 rotation periods without de
bilizing the bound state. We remark, that neither an expon
tial function nor a power law give a satisfactory descripti
of the increase in the delay time nearf1 .

At the stability boundary in the excitable regimef2 , the
delay times are relatively small. Close tof2 an initially sym-
metrical spiral pair always gains a phase difference afte
few rotation periods and becomes asymmetric. Below thre

FIG. 4. Characteristic time for the breakdown of a spiral pair
a function off.
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old the asymmetry increases rapidly, and finally one of
two spirals is pushed to the periphery. Above thresho
however, this phase difference does not cause the desta
zation of the bound state. Even when the phase differe
first increases, later it may decrease again. The asymm
remains small and changes with time leading to a spiral p
that moves through the medium by varying its direction
drift as shown in Fig. 5. The corresponding tip trajector
are plotted in Fig. 1~e!. During more than 100 rotation peri
ods the described behavior has been repeated several
without increasing the mean distance between the spiral
@compare Fig. 1~f!#. Being pronounced in a narrow regio
close to f2 , this scenario persists in weakened form f
larger f values. Far beyondf2 the stable spiral pairs ar
again axis-symmetric.

B. Drift of bound states

Stable axis-symmetric bound states formed by two co
terrotating spiral waves drift as a whole with constant velo
ity parallel to their symmetry axis. To determine the dr
velocity, we store the tip coordinates of both spirals at ev
5 time steps. From the recorded data we obtain the posit
of the core centers and determine the mean drift velocity
the spiral pair.

s

FIG. 5. Time sequence showing the dynamics of a bound s
near the boundaryf2 (f50.00375). A sudden phase shift de
creases but causes a change in the drift direction. This proce
repeated periodically without destabilizing the bound state.
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From the calculations follows that the drift velocity
usually one or two orders of magnitude smaller than
propagation velocity of the spiral wave. In the parame
region belowf1 , an increase off results in a slow down of
the drift. At f values largerf2, bound states drift at com
paratively large velocities that decrease with increasingf.
Note, that stable spiral pairs belowf1 and abovef2 drift in
opposite directions, compare Fig. 6, open triangles. The
merical determination of the point on thef axis where the
drift direction changes sign~labeled IP in Fig. 6! is very
time-consuming as the inversion point is located close to
transition from inward to outward meandering for noninte
acting spiral waves. Thus, the spirals are characterized
large wave lengths and perform compound rotation w
large core size.

To obtain some information about the drift in the unsta
area f1,f,f2 , we consider the interaction of a sing

FIG. 6. Drift velocity of meandering spiral pairs for differen
values of light intensity. Open triangles: symmetrical spiral pairs
the area of stable bound states outside the dotted vertical l
Filled circles: waves near the boundary~pseudobound states!.
e
r

u-

e
-
by
h

spiral wave with its mirror image close to a plane bounda
impermeable to diffusion~i.e., no flux boundary conditions!.

To create such a pseudo-bound state, we shift a sp
wave to one of the boundaries. To feel the boundary
distance of the tip should be of the order of the wave leng
Figure 7 shows typical tip trajectories of spiral waves prop
gating close to a plane boundary impermeable to diffusi
From those trajectories we again calculated those the m
drift velocity ~filled circles in Fig. 6!. In the parameter re-
gions with stable bound states the results are in good ag
ment with the data obtained previously for axis-symmet
spiral pairs. The transition into the unstable area at lowf
values is accompanied by a distinct increase in drift veloc
Then the drift velocity decreases again. By interpolating
tween the calculated values the inversion point IP was fo
close to the stability boundaryf1 .

IV. DISCUSSION

The presented results show strong influence of the exc
tion threshold on the stability of spiral pairs and on the v
locity and the direction of their drift through the medium
Though the numerical calculations are carried out within
Oregonator model for the light-sensitive BZ medium, t
main conclusions are expected to apply to other active me
describing generic aspects of spiral pair dynamics indep
dent of the details of the underlying reaction kinetics.

On the other hand, it is interesting to compare the num
cal results with experimental data. The parameter valuef
51.8, 1/«58, 1/«85720, andq50.002 used during the nu
merical simulations correspond approximately to the exp
mental situation studied. A measure for the strength of
interaction is the ratio between the drift velocity of spir
pairs and the propagation velocity of the spiral wave. D
pending on the parameterf the numerically calculated valu
for this ratio is between 1021 and 1022, in good agreemen

s.
g
r-
FIG. 7. Tip trajectories of me-
andering spiral waves propagatin
close to a plane boundary impe
meable to diffusion for different
values off. The arrows indicate
the direction of the drift. Param-
eters:f 50.7, «50.1, «850.22,q
50.002, Dw /Du51.12. ~a! f
50.004, ~b! f50.008, ~c! f
50.009,~d! f50.01.
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6434 PRE 60I. SCHEBESCH AND H. ENGEL
with cdrift /cwave'1022 obtained experimentally with the
same recipe@10#. Also, the numerically calculated values fo
the wavelengths between 1.5 and 3 mm, the rotation per
between 24 and 52 s, and the outer diameters of the tip
pattern between 0.6 and 2.8 mm are in the range of the
perimental findings. A detailed quantitative comparison
tween numerical and natural experiment requires the rela
between the intensity of incident light~in mW/cm! and the
dimensionless photosensitive bromide flowf and will be
presented in a separate paper.

The results elucidate the relation between the local
namics, the dynamic instabilities of noninteracting spi
waves and the dynamic behavior of spiral pairs. The par
eter region where spiral pairs are unstable covers oscilla
as well as excitable local dynamics, and simple as wel
compound rotation. Striking is how close to each other
the f axis occur the breakdown of spiral pairs atf1 , the
transition of noninteracting spiral waves from inward to o
ward meandering, and the reversion of the drift direction o
single spiral parallel to a boundary impermeable to diffusi
In the numerical simulations there is always some unc
tainty in the determination of the exact position of the
boundaries. Thus, it remains still unclear whether they co
cide or not.

We emphasize, that in the three-component Oregon
model the symmetry-breaking instability of spiral pairs o
curs in a substantial parameter range. Remarkably, with
tt
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two-component version of the Oregonator model, obtain
by eliminating the bromide balance adiabatically, we fail
to reproduce the instability in the parameter range where
three-component model displays it. Moreover, to account
a possible shift of the stability boundariesF1 and F2 we
have searched for the instability outside of this interval. Ne
ertheless, for simulation times up to 150 rotation periods
were not able to observe the instability. Similar observatio
were reported by Aransonet al. who showed that in contras
to the Ginzburg-Landau model a symmetric configuration
spirals in a two-component reaction-diffusion model is sta
@14#. To our knowledge, the only counterexample has be
reported by Ruiz-Villarrealet al. @11# who observed the in-
stability in a two-component modified FitzHugh-Nagum
model simultaneously noting that the results depended on
grid mesh. Our results support the conjecture by Aran
et al. @9# that a third component is necessary to observe
symmetry-breaking instability of spiral pairs. However, t
general prove, that only three-component models can do
instability, is still lacking.

ACKNOWLEDGMENTS

This work was partially supported by grants from th
Deutsche Forschungsgemeinschaft and the Fonds der
mischen Industrie.
D

-

al
@1# A. N. Zaikin and A. M. Zhabotinskii, Nature~London! 225,
535 ~1970!; A. T. Winfree, Science175, 634 ~1972!; S. C.
Müller, Th. Plesser, and B. Hess, Physica D24, 71 ~1987!; G.
Li, Q. Quyang, V. Petrov, and H. L. Swinney, Phys. Rev. Le
77, 2105~1996!.

@2# S. Jakubith, H. H. Rotermund, W. Engel, A. V. Oertzen, a
G. Ertl, Phys. Rev. Lett.65, 3013~1990!; M. Eiswirth and G.
Ertl, in Chemical Waves and Patterns, edited by R. Kapral and
K. Showalter, ~Kluwer Academic Publishers, Dordrech
1995!, p. 447.

@3# G. Gerisch, Naturwissenschaften58, 420 ~1983!; K. J. Lee, E.
C. Cox, and R. E. Goldstein, Phys. Rev. Lett.76, 1174~1996!.

@4# A. T. Winfree,When Time Breaks Down~Princeton University
Press, New Jersey, 1987!; J. M. Davidenko, A. M. Pertsov, R
Salomonsz, W. Baxter, and J. Jalife, Nature~London! 355, 349
~1992!.

@5# J. Lechleiter, S. Girad, E. Peralta, and D. Clapham, Scie
252, 123 ~1991!.

@6# W. Jahnke, W. E. Skaggs, and A. T. Winfree, J. Phys. Ch
93, 740 ~1989!; G. S. Skinner and H. L. Swinney, Physica
48, 1 ~1991!; M. Braune and H. Engel, Chem. Phys. Lett.204,
257 ~1993!; 211, 534 ~1993!; D. Barkley, inChemical Waves
.

e

.

and Patterns@1#, p. 163.
@7# I. Aranson, L. Kramer, and A. Weber, Physica D53, 376

~1991!; Phys. Rev. E47, 3231 ~1993!; 48, R9 ~1993!; Phys.
Rev. Lett.72, 2316~1994!.

@8# E. A. Ermakova, A. M. Pertsov, and E. E. Shnol, Physica
40, 185 ~1989!.

@9# I. Aranson, H. Levine, and L. Tsimring, Phys. Rev. Lett.76,
1170 ~1996!.

@10# H. Brandtsta¨dter, M. Braune, and H. Engel, inA Perspective
Look at Nonlinear Media, edited by J. Parisi, S. C. Mu¨ller, and
W. Zimmermann~Springer, Berlin, 1998!, p. 271.
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